

Technical Information Liquiline M CM42

Memosens: pH/ORP, oxygen, conductivity Analog sensors: pH/ORP, conductivity, concentration, resistance

Two-wire transmitter for Ex and non-Ex areas

Application

Liquiline M CM42 is a modular two-wire transmitter for all areas of process engineering.

Depending on the version ordered, Liquiline has one or two analog current outputs. In addition, it can be connected to fieldbuses in accordance with the FOUNDATION Fieldbus, PROFIBUS PA and HART protocol.

The transmitter is suitable for pollution degree ${\tt 3}.$

The highly robust plastic version and the hygienic stainless steel version are tailored to the following applications:

- Chemical processes
- Pharmaceuticals industry
- Foodstuff technology
- Applications in hazardous areas

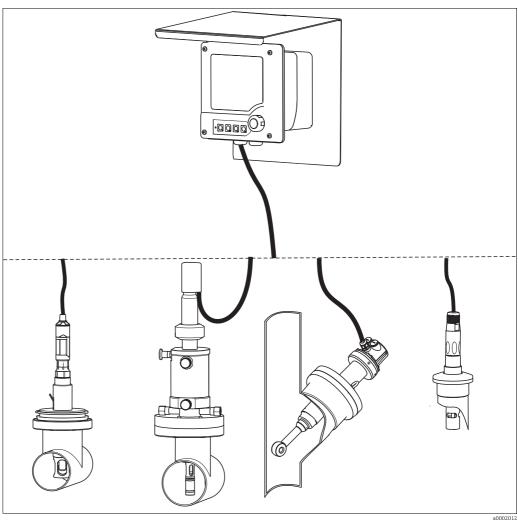
Your benefits

- Cost-saving:
 - Simple commissioning with Quick Setup and Navigator
 - Memosens: Plug & play laboratory-calibrated sensors
 - Predictive maintenance system detects when a sensor needs to be cleaned, calibrated or replaced.
 - Less storage thanks to modular design
 - Effective asset management thanks to Fieldcare and W@M $\,$
- Safe:
 - Memosens: Active display of cable interruption
 - User-guided commissioning, graphic display and plain text quidance for maximum operating safety
 - Approvals: ATEX, FM, CSA, NEPSI, TIIS
 - User administration: Code-protected commissioning
 - pH glass with Memosens: SIL2 measuring point with TÜV approval

Table of contents

Measuring system
Equipment architecture4Software4DAT memory modules5Suitable sensors5
Dependability.5Reliability5Maintainability7Safety8
Input9Measured variables9Measuring ranges9Binary input (Memosens): pH/ORP, oxygen, conductivity9Analog input: pH / ORP10Analog input: Conductivity11
Output12Output signal12Signal on alarm12Load12Output signal range12Ex specification current output12Ex specification PROFIBUS and FOUNDATION Fieldbus12
Current output, passive12Span12Signal characteristics12Cable specification12
Power supply13Grounding the housing13Supply and signal voltage14Supply voltage17Sensor connection17Sensor connection: Memosens sensors18Sensor connection: analog pH/ORP sensors19Sensor connection: analog conductivity sensors23
Performance characteristics25Reference temperature25Current output response time25Maximum measured error Memosens25Tolerance of current outputs25Repeatability25Temperature compensation conductivity25Temperature adjustment25
Installation25Wall securing plate25Weather protection cover26Installation options27Installation in Ex area27

Environment Ambient temperature range Ambient temperature limits Storage temperature Electromagnetic compatibility Degree of protection Relative humidity Pollution degree	29 29 29 29 29
Mechanical construction Dimensions Weight Material	30
Operability	31
Ordering information Product page Product configurator Product structure Scope of delivery	32
Certificates and approvals	34
	35



Function and system design

Measuring system

A complete measuring system consists of:

- Liquiline M CM42 transmitter with mounting plate (e.g. for wall mounting)
- sensor and suitable sensor cable
- assembly suitable for the sensor (optional)
- post retainer (optional)
- weather protection cover (optional)

Examples of a measuring system

pH / ORP (analog)

- CM42-P...
- Measuring cable CPK9
- Cleanfit CPA471 assembly
- Orbisint CPS11 sensor

Conductivity, inductive measurement (analog)

- CM42-I...
- Dipfit CLA111 assembly
- Indumax CLS50 sensor

Conductivity, conductive measurement (analog)

- CM42-C...
- Measuring cable CPK9
- Condumax CLS16 sensor

Memosens (digital)

- CM42-K/L/M/N/O...
- Measuring cable CYK10
- (Unifit CPA442 assembly)
- Sensor 1)

1) e.g. CPS11D (pH glass), CPS471D (pH ISFET), CPS341D (enamel pH), CPS16D (pH/ORP combined), CLS15D/ CLS16D/CLS21D (LFc), CLS50D/CLS54D (LFi), COS22D/COS51D (DO)

You can combine your measuring point with a range of assemblies and sensors. For more information, see the "Accessories" section or the specified documentation.

NOTICE

Effect of climatic conditions: rain, snow, direct sun

Impaired operation to complete transmitter failure

When installing outside, always use the weather protection cover (see accessories).

Equipment architecture

Software

You can choose from the following software packages:

- Standard:
 - Standard application for the most common measuring points
- Advanced:

Many additional functions that increase safety and quality

Package		Features	
	pH /ORP (glass/ISFET)	Conductivity	Oxygen
Standard	Analog sensors Offset and two-point calibration Sample calibration Calibration with standard buffers Manual buffer specification Temperature compensation Temperature adjustment Isotherm intersection Simulation of current output Self-diagnosis Calibration stability settings Clock Memosens sensors as for analog with the addition of: Sensor information Sensor check	Analog sensors - Sample calibration - Temperature calibration: one- point - Temperature compensation: linear, NaCl, ultrapure water (NaCl, HCl) - Simulation of current output - Self-diagnosis - Concentration measurement - Clock Memosens sensors as for analog with the addition of: - Sensor information - Sensor check	Memosens sensors - Slope calibration - in air (100% rF) - in water (100% airsaturated) - in air (with input of currer absolute air pressure and relative humidity) - Zero point calibration - Sample calibration - Temperature adjustment - Medium compensation - Calibration stability settings - Simulation of current output - Self-diagnosis - Clock - Sensor information - Sensor check
Advanced		with the addition of:	
	Analog sensors - Medium compensation - Calibration timer - Sensor condition check (SCC) - Process check system (PCS) Memosens sensors as for analog with the addition of - Operated hours counter - Sterilization cnt.	Analog sensors - Calibration with separate installation factor (inductive measurement only) - Polarization detection (conductive measurement only) - Temperature compensation via user table - Two-point temperature adjustment: offset and slope - USP alarm and prealarm Memosens sensors as for analog with the addition of - Operated hours counter - Sterilization cnt.	Memosens sensors - Polarization voltage setting - Calibration timer - Sensor statistics - Operated hours counter - Sterilization cnt.
	All devices, regardless of meast - Logbooks - Data logbook - Free assignment of measure - Switching on and off of diag: - Extended user administratio - Current output tables	urement parameter d values to current outputs (optior	nal)

DAT memory modules

There are 3 different types of DAT module

SystemDAT

- For changing the sensor type, software updates (more recent software version) and changing the language package
- Part of the scope of delivery of the version ordered and available as an accessory
- Optional accessory

FunctionDAT

- For software upgrades (additional functionality)
- Extended functional range (2nd current output)
- Optional accessory

CopyDAT

- Memory for own configuration settings
- Optional accessory
- A FunctionDAT is never available for a SIL device since the device already has all the possible functions and its functions can therefore not be extended.

A SystemDAT is also not available for the SIL device since it would not be possible to ensure the "functional safety" otherwise.

Suitable sensors

pH/ORP

- Analog and Memosens glass electrodes
- Analog and Memosens ISFET sensors
- Analog and Memosens ORP sensors
- Memosens pH/ORP combined sensors
- Analog and Memosens enamel pH electrodes
- Analog single electrodes (glass or antimony)

Conductivity

- Analog and Memosens, conductive sensors
 - Two-electrode sensors
 - Four-electrode sensors
- Analog and Memosens, inductive sensors

Oxygen

Amperometric sensors:

- with Memosens technology
- 12 and 40 mm design

Dependability

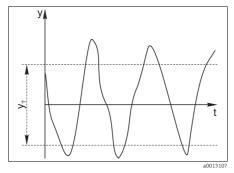
Reliability

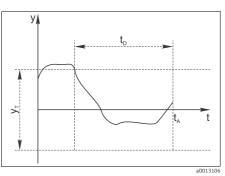
Memosens

Memosens makes your measuring point safer:

- No-contact, digital signal transmission allows optimum galvanic isolation
- No contact corrosion
- Completely watertight
- $\ \ \, \blacksquare$ Sensors can be calibrated in a lab, which increases the availability of measured values
- Predictive maintenance thanks to recording of sensor data, e.g.:
 - Total hours of operation
 - Hours of operation with very high or very low measured values
 - Operating hours at high temperatures
 - Number of steam sterilizations
 - Sensor status

Quick Setup


To the first measured value within 1 minute


Once you have set up the few parameters in the Quick Setup menu, the measuring point is ready to measure. The first measured value is reliably displayed.

Process Check System (PCS): Life check

This function is used to check the measuring signal for stagnation. An alarm is triggered if the measuring signal does not change over a certain period (several measured values). The reason for such behavior can be contamination, clogging or similar.

Normal measuring signal, no alarm

y Measuring signal y_T Minimum signal fluctuation

Stagnating signal, alarm is triggered

t_D Specified time interval

t_A Time at which the alarm is triggered

Sensor Condition Check (SCC, pH only)

This function monitors the electrode status and the degree of electrode aging. The status is displayed with the messages "SCC electrode condition bad" or "SCC electrode condition sufficient". The status of the electrode is updated after every calibration.

Sensor Check System (SCS, pH only)

The Sensor Check System monitors the pH glass resistance or reference resistance (for analog sensors only), thus indicating possible incorrect measurements that may occur as a result of damage to or clogging of the pH electrode.

In addition, the SCS detects glass breakage in the case of classic glass electrodes as well as leaks in the case of ISFET sensors.

Polarization monitoring (conductivity only, conductively measured)

Polarization effects in the boundary layer between the sensor and the measuring solution limit the measuring range of conductive conductivity sensors.

The transmitter can detect and report polarization effects using an intelligent signal evaluation process.

United States Pharmacopeia (USP) and European Pharmacopeia (EP) (conductivity only)

The requirements for ultrapure water in the pharmaceutical industry are determined primarily by the American USP and European EP.

The transmitter complies with USP/EP requirements for conductivity measuring systems:

- Exact temperature measurement at the place of conductivity measurement
- Simultaneous display of uncompensated conductivity values and temperature is possible
- \blacksquare Display resolution 0.01 $\mu S/cm$
- Exact factory calibration of the transmitter with traceable precision resistance (optional)
- Exact adjustment of sensors in the factory as per ASTM D 1125-91 or ASTM D 5391-99 (optional)
- Temperature-dependent measured value monitoring as per USP and EP.

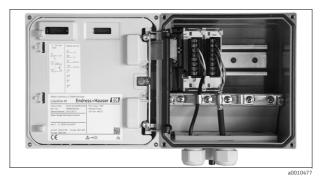
The limit functions for pharmaceutical water are implemented in the "Advanced" software package in accordance with USP and EP: For conductivity measurements, the limit functions for pharmaceutical water are implemented in the software in accordance with USP and EP:

- Water for Injection (WFI) as per USP <645> and EP
- Highly purified water (HPW) as per EP
- Purified water (PW) as per EP

The uncompensated conductivity value and the temperature are measured for the USP/EP limit functions. The measured values are compared with the tables set down in the standards. An alarm is triggered if the limit value is exceeded. In addition, a prealarm can be set that flags undesirable operating statuses before they occur.

Application-optimized calibration models (oxygen only)

In separate functions, the transmitter allows process-adjusted zero point sensor calibration or sensor calibration via the slope.


There are different calibration models for this, ranging from simple slope calibration in air that is saturated with water vapor to slope calibration with input of the absolute air pressure and relative humidity at the measuring location.

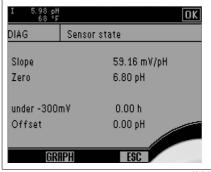
The latter model allows in-process calibration during operation as well as during sterilization and cleaning.

The number of calibrations and sterilizations are tracked separately for the sensor and membrane cap. The relevant counter can be reset if the membrane cap is replaced.

Maintainability

Modular design

Liquiline inside (version with sensor module, without wiring)


CPU and sensor module

Sensor monitor

You will find the sensor monitor in the DIAG menu. Important sensor data incl. warning and alarm limits are displayed either graphically or numerically.

Sensor monitor, graphical display (example)

Sensor monitor, numerical display (example)

Safety

User administration

The device has a user administration function in order to avoid unscheduled changes to the measuring point.

You need to log on as an Expert to switch on the user administration function. The first time you log onto the device, you will therefore be asked to enter a password (the "Admin" user name is already entered).

The user administration function makes two different modes available in the Advanced version:

Roles

- There are 3 fixed user roles (Expert, Maintenance, Operator).
- "Experts" always have all the rights. "Operator" is the role with the least amount of rights.
- Each role has its own individual password. This password can be changed.
- No other user roles can be created.

User accounts

- You can create and manage a maximum of 15 user accounts.
- You need to be logged on as an "Expert" to be able to manage accounts.
- In each user account you specify the user name and the password and assign the new user one of 3 user roles (Operator, Maintenance and Expert).
- Multiple user accounts with the "Expert" role are possible.

SIL

A TÜV-approved SIL2 version of the Liquiline M CM42 is also available (CM42-M* only).

Safety functions

- Safe output of the digitized value at the current output
- Monitoring of the measured value for leaving a defined interval
- Safe calibration and adjustment
- Additional information and Safety Manuals can be found at: www.endress.com/SIL

Reordering validated software

You can order new devices with older, validated software so you do not have to constantly validate new software versions of new devices. This is possible as long as allowed by the hardware version.

Input

Measured variables	> Documentation of the connected sensor	
Measuring ranges	> Documentation of the connected sensor	

Binary input (Memosens): pH/ORP, oxygen, conductivity

MEMO()SENS

Cable specification

CYK10 with Memosens Fixed cable with Memosens

Max. cable length 100 m (330 ft) Max. cable length 55 m (180 ft)

Ex specification

 $\begin{array}{lll} \text{Max. output voltage U_o:} & 5.04 \text{ V} \\ \text{Max. output current I_o:} & 80 \text{ mA} \\ \text{Max. output P_o:} & 112 \text{ mW} \end{array}$

For connecting the measuring cable $CYK10^{4)}$ For connecting fixed cable of sensor $CLS50D^{5)}$

- 1) CM42-*G*******, CM42-*X******, CM42-*Z******
- 2) CM42-*V******
- 3) CM42?*I******
- 4) CM42-K********, CM42-M*******, CM42-N*******
- 5) CM42-L******

Analog input: pH / ORP

Cable specification

Without SCS	Max. cable length 50 m (160 ft)
With SCS	Max. cable length 20 m (65 ft)

Applicable temperature sensors

- Pt100
- Pt1000
- NTC 30K

Ex specification

Intrinsically safe sensor circuit with protection type: Ex ia IIC ¹⁾ Intrinsically safe sensor circuit with protection type: Ex ic IIC ²⁾ Intrinsically safe sensor circuit with protection type: Ex ia Ga IIC ³⁾		
Glass ISFET		
Max. output voltage U _o	10.08 V	10.08 V
Max. output current I _o	4.1 mA	50.7 mA
Max. output P _o	10.2 mW	128 mW
Max. external inductance L _o	1 mH	1 mH
Max. external capacitance \tilde{C}_o	250 nF	250 nF
Connection class as per NE116 ⁴⁾	SensISCO1X	-

- 1) CM42-*G*******, CM42-*X******, CM42-*Z******
- 2) CM42-*V******
- 3) CM42-*I*******
- 4) CM42-*G******

When pH/ORP glass electrodes are connected to terminals 317, 318, 320, 111, 112 and 113, the device corresponds to connection class 1 as per NAMUR Recommendation NE116 (SensISCO). Terminals 315 and 316 may not be connected for this categorization. The device is labeled SensISCO1X.

Input impedance

 $> 1*10^{12} \Omega$ (under nominal operating conditions)

Input leakage current

 $< 1*10^{-13}$ A (under nominal operating conditions)

Analog input: Conductivity

Cable specification

Conductivity/specific resistance, conductively measured $^{1)}$ Two-electrode sensor $10~\mu\text{S}\cdot\text{k}$ to $20~\text{mS}\cdot\text{k}$ / $0.1~\text{M}\Omega/\text{k}$ to $50~\Omega/\text{k}$ 5 $\mu\text{S}\cdot\text{k}$ to $20~\text{mS}\cdot\text{k}$ / $0.2~\text{M}\Omega/\text{k}$ to $50~\Omega/\text{k}$ 0.1 $\mu\text{S}\cdot\text{k}$ to $20~\text{mS}\cdot\text{k}$ / $20~\text{M}\Omega/\text{k}$ to $50~\Omega/\text{k}$	Max. cable length 100 m (330 ft) Max. cable length 50 m (160 ft) Max. cable length 15 m (50 ft)
Conductivity, measured conductively Four-electrode sensor 10 µS·k to 1.5 S·k 0.1 µS·k to 20 mS·k Conductivity, measured inductively ²⁾	Max. cable length 100 m (330 ft) Max. cable length 15 m (50 ft) Max. cable length 55 m (180 ft)

- 1) with cable CYK71, CPK9 or fixed cable
- 2) with cable CLK5, CLK6 or fixed cable

Applicable temperature sensors

- Pt100
- Pt1000

Ex specification, conductive sensors

Intrinsically safe sensor circuit with protection type: Ex ia IIC ¹ Intrinsically safe sensor circuit with protection type: Ex ic IIC ² Intrinsically safe sensor circuit with protection type: Ex ia Ga IIC ³		
Max. output voltage U _o 10.08 V Max. output current I _o 23 mA		
Max. output P _o 57 mW		
Max. external inductance L_o 300 μH		
Max. external capacitance C_0 50 nF		

- 1) CM42-*G*******, CM42-*X******, CM42-*Z*******
- 2) CM42-*V******
- 3) CM42?*I******

Ex specification, inductive sensors

Intrinsically safe sensor circuit with protection type: Ex ia IIC ¹⁾ Intrinsically safe sensor circuit with protection type: Ex ic IIC ²⁾ Intrinsically safe sensor circuit with protection type: Ex ia Ga IIC ³⁾		
$\begin{array}{ll} \text{Max. output voltage U}_o & 10.08 \text{ V} \\ \text{Max. output current I}_o & 64 \text{ mA} \\ \text{Max. output P}_o & 128 \text{ mW} \end{array}$		
For connecting the inductive sensors CLS50, CLS54		

- 1) CM42-*G*******, CM42-*X******, CM42-*Z******
- 2) CM42-*V******
- 3) CM42?*I******

O_1	111	out
\mathbf{C}	a c p	Jul

	•	
Output signal	$1x~4~to~20~mA$, passive, potentially isolated against sensor circuit $^{1)2)}$ $2x~4~to~20~mA$, passive, potentially isolated against sensor circuit and against each other $^{1)2)3)}$ PROFIBUS PA, potentially isolated against sensor circuit $^{1)2)4)}$ FOUNDATION Fieldbus, potentially isolated against sensor circuit $^{1)2)5)}$	
Signal on alarm	3.6 to 22.0 mA (3.6 mA fixed value when using HART communication) digitally via fieldbus ⁶⁾	
Load	Max. load with supply voltage of 24 V: 500 Ω Max. load with supply voltage of 30 V: 750 Ω	
Output signal range	3.6 to 22.0 mA	
Ex specification current output	$\langle \overline{\xi_{x}} \rangle$ Intrinsically safe supply and signal circuits, passive	
output	$\label{eq:max_input} \begin{split} &\text{Max. input voltage } U_i \\ &\text{Max. input current } I_i \\ &\text{Max. input } P_i \\ &\text{Max. internal inductance } L_i \\ &\text{Max. internal capacitance } C_i \end{split}$	30 V 100 mA 750 mW 29 µH (output 1) 24 µH (output 2) 1.2 nF (output 1) 0.2 nF (output 2)

Ex specification PROFIBUS and FOUNDATION Fieldbus

$\langle E_{x} \rangle$ Suitable for use as a field device in a FISCO system as per EN/IEC 60079-27		
Max. input voltage U _i	17.5 V	
Max. input current I _i	380 mA	
Max. input P _i	5.32 W	
Max. internal inductance L _i	<10 μH	
Max. internal capacitance C_i < 5 nF		

Current output, passive

Span	3.6 to 22.0 mA
Signal characteristics	Linear
Cable specification	Cable type: shielded wire, Ø 2.5 mm (14 AWG)

¹⁾ Potential isolation for Memosens in sensor plug

²⁾ For inductive sensors with Memosens protocol CLS50D and CLS54D not potentially isolated against sensor circuit!

³⁾ Current output 1 and current output 2 (optional)

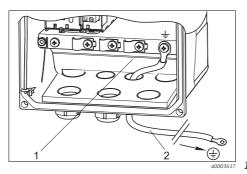
⁴⁾ For version with PROFIBUS PA

⁵⁾ For version with FOUNDATION Fieldbus

⁶⁾ For version with PROFIBUS PA or FOUNDATION Fieldbus

Power supply

Grounding the housing


Plastic housing

▲ WARNING

Electric voltage at ungrounded cable mounting rail

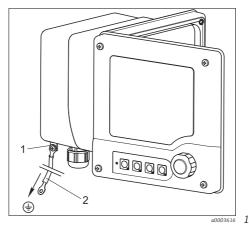
No shock protection

► Connect the cable mounting rail to the foundation ground using a separate ≥2.5 mm² (14 AWG) functional ground.

Grounding the housing

Cable mounting rail

≥2.5 mm² (14 AWG) functional ground


Stainless steel housing

▲ WARNING

Electric voltage at ungrounded housing

No shock protection

► Connect the external ground connection of the housing to the foundation ground using a separate wire (GN/YE) (≥2.5 mm², corresponds to 14 AWG).

Grounding the housing

Outer ground connection

 \geq 2.5 mm² (14 AWG) wire (GN/YE)

Supply and signal voltage

A WARNING

In sensor CLS50D, the internal sensor circuits are connected to the shielded wire of the supply cable and are therefore also connected to ground via the shielded connection of the CM42 $\rightarrow \blacksquare 18$.

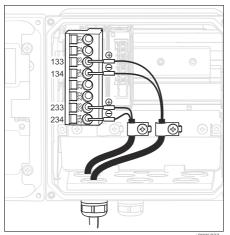
The overheating of electronic components constitutes a fire and explosion hazard and may result in serious injury and death.

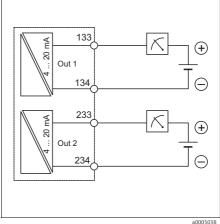
- ► Never connect the supply circuit to the ground.
- Use an active barrier (e.g. RN221) to ensure safe galvanic isolation during operation in explosive atmospheres (see Accessories).

NOTICE

The internal sensor circuits of CLS50D and CLS54D are also connected to ground via the shielded wire of the supply cable and via the shielded connection of the CM42 $\rightarrow \blacksquare$ 18.

Incorrect connection of the supply circuit results in the overheating of components which in turn results in the transmitter being destroyed.


- ▶ Never connect the supply circuit to the ground.
- For sensor CLS50, the following applies:
 The internal sensor circuits in the sensor are connected to the shielded wire of the supply cable.
 This results in the sensor circuits also being connected to the ground. The transmitter CM42 features safe galvanic isolation between the supply and sensor circuit.

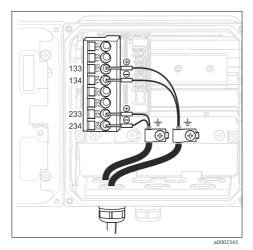

4 to 20 mA

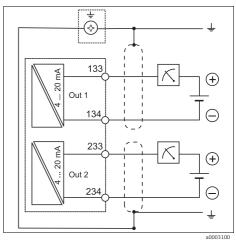
- Connect the transmitter with a shielded two-wire cable.
 - How the shield is connected depends on the interference influence expected. To suppress electrical fields, it suffices to ground the shield at one end. If you also want to suppress interference from a magnetic alternating field, you must ground the shield at both ends.

In the case of a SIL device, you must ground both current outputs at both ends.

The second current output can be ordered as an option (see "Ordering information").

View in device (CPU module)


Wiring diagram



4 to 20 mA / HART

For safe communication via the HART protocol and for compliance with NAMUR NE 21, you must use a two-wire cable that is grounded at both ends.

► Connect the transmitter to a two-wire cable that is grounded at both ends.

View in device (CPU module)

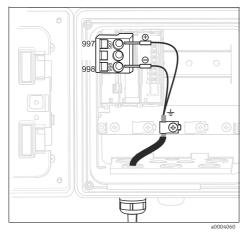
Wiring diagram

PROFIBUS PA and FOUNDATION Fieldbus

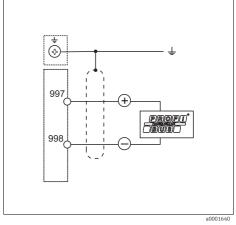
Use a fieldbus cable grounded at both ends (device and PCS).

There are various ways of connecting the unit:

- Two-wire cable grounded at both ends, "hard grounding" (qenerally to be given priority over "capacitive connection to ground")
- 2. If there is a risk of large potential equalization currents.

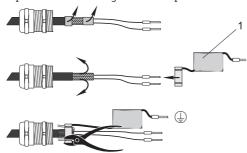

 Shielded two-wire cabling, "capacitive connection to ground" (shield grounded on device side via capacitor, "C-module" accessory required)

Do not use in the hazardous area!

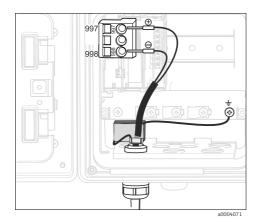

3. Use the fieldbus connection socket (accessories)

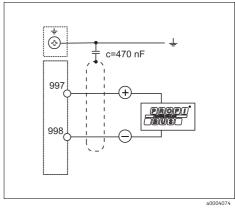
"Hard grounding"

- 1. Connect the cable shield to the cable mounting rail.
- 2. Connect the cable cores as per the assignment $(\rightarrow \Box)$.



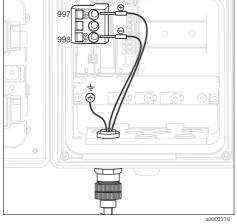
Wiring diagram



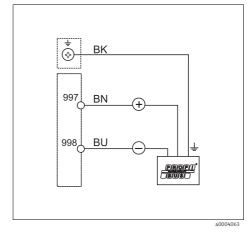

"Capacitive ground connection"

1. Pull back the braided shield, put the stranded extension wire of the C-module (item 1) onto the exposed shield and tighten the clip:

- 2. Connect the extension wire to the cable mounting rail.
- 3. Connect the cable cores as per the assignment ($\rightarrow \square$).



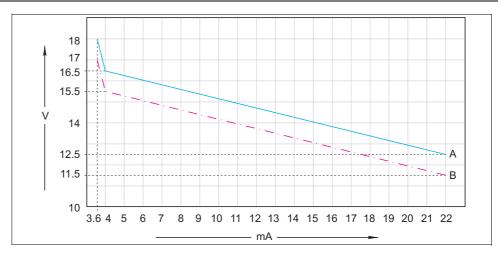
View in device (CPU module)


Wiring diagram

"Fieldbus connection socket"

- 1. Screw the fieldbus connection socket into the housing bushing.
- 2. Trim the connection cores of the socket to approx. 15 cm.
- 3. Connect the cable cores as per the assignment. In doing so, you must place the cable shield (GN/YE) on the cable mounting rail ($\rightarrow \square$).

View in device (CPU module)


Wiring diagram

Cable specification

max. cable cross-section: 2.5 mm² (\$\text{\$=}14\text{ AWG}), GND 4 mm² (\$\text{\$=}12\text{ AWG})

Supply voltage

Minimum supply voltage at the transmitter depending on the output current

- A with HART communication
- B without HART communication

Profibus PA / FOUNDATION Fieldbus: 9 to 32 V DC (non-Ex)

9 to 17.5 V DC (Ex)

Bus current consumption: 22 mA

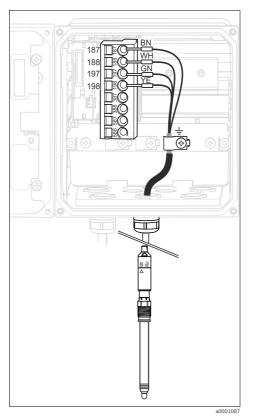
Sensor connection

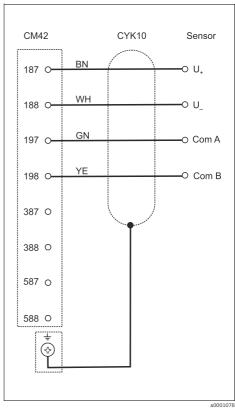
Explanation of abbreviations in the following diagrams:

Explanation of aboreviations in the following diagrams.							
Abbreviation	Meaning						
рН	pH signal						
Ref	Signal from reference electrode						
Src	Source						
Drn	Drain						
PM	Potential matching						
U ₊	December of the district constant						
U_	Power supply of the digital sensor						
Com A	Communication signals of the digital conservation						
Com B	Communication signals of the digital sensor						
ϑ	Signal of the temperature sensor						
d.n.c.	Do not connect!						

NOTICE

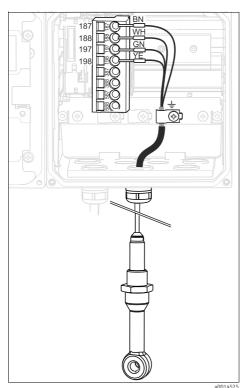
No shielding against electrical and magnetic interference

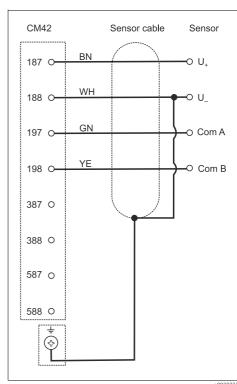

Interference can give erroneous measurement results


- You must connect shielded connections or terminals with functional earth (\pm) (there is no protective earth in the case of the plastic housing (\oplus)).
- ► Keep magnetic interference fields away from the sensor since inductive conductivity sensors use magnetic fields.

Sensor connection: Memosens sensors

pH/ORP incl. combined sensors, oxygen, conductively measured conductivity

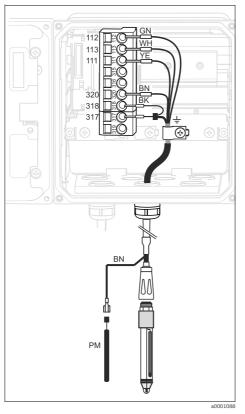


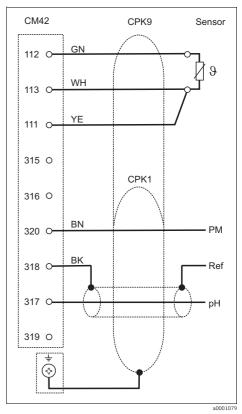

View in device (sensor module)

Wiring diagram

Inductively measured conductivity

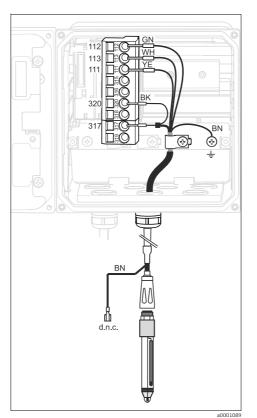
View in device (sensor module)

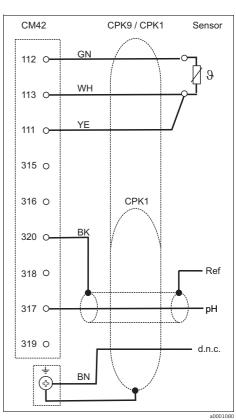



Wiring diagram CLS50D, CLS54D

Sensor connection: analog pH/ORP sensors

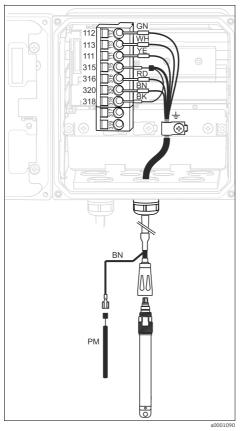
Glass electrodes, with PAL (symmetrical)

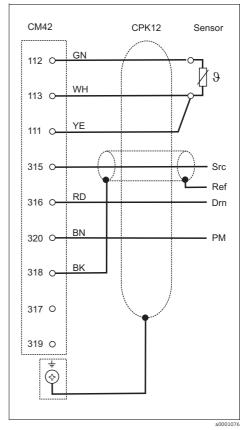



View in device (sensor module)

Wiring diagram

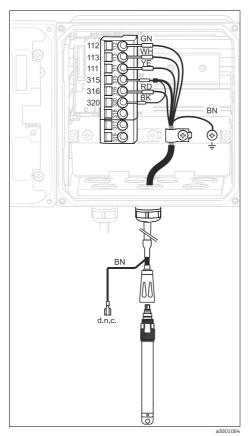
Glass electrodes, without PAL (asymmetrical)

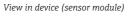

View in device (sensor module)

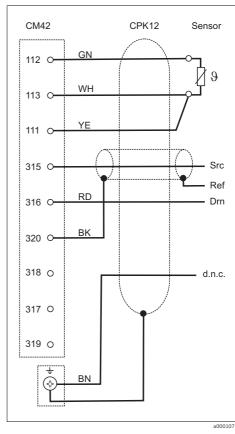


Wiring diagram

ISFET sensors, with PAL (symmetrical)






View in device (sensor module)

Wiring diagram

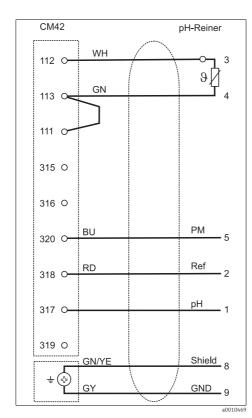
ISFET sensors, without PAL (asymmetrical)



Wiring diagram

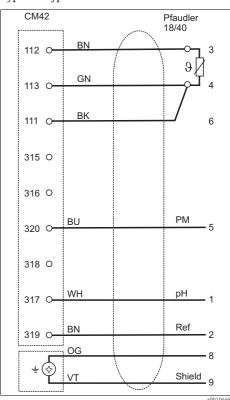
Pfaudler electrodes

With PML (symmetrical)


Pfaudler electrode, absolute Type 03/type 04

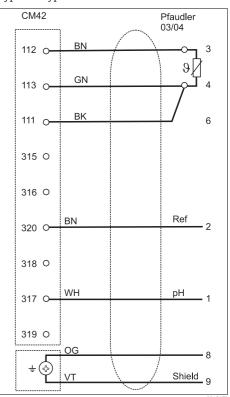
Wiring diagram

With PML (symmetrical)

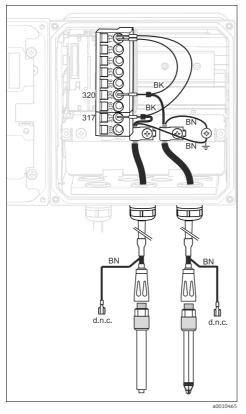

pH Reiner

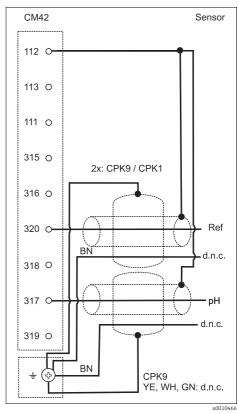
Wiring diagram

With PML (symmetrical)


Pfaudler electrode, relative Type 18/type 40

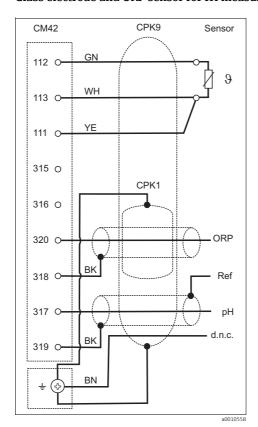
Wiring diagram


Without PML (asymmetrical)


Pfaudler electrode, absolute Type 03/type 04

Wiring diagram

Individual electrodes (e.g. CPS64 glass or antimony), without PAL (asymmetrical)

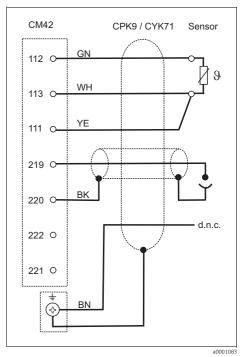


View in device (sensor module)

Wiring diagram

Glass electrode and ORP sensor for rH measurement

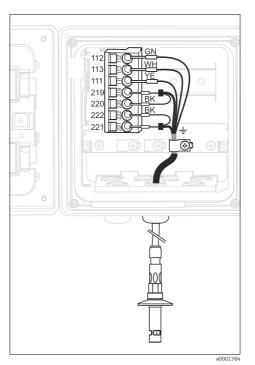
Wiring diagram

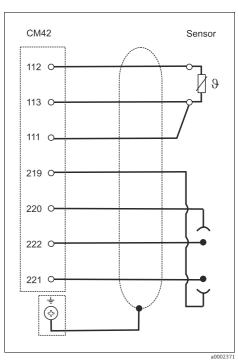

For rH measurement, connect a pH combination electrode (e.g. CPS11 with sensor cable CPK9) **and** an ORP sensor (e.g.

CPS12 with sensor cable CPK1).

Sensor connection: analog conductivity sensors

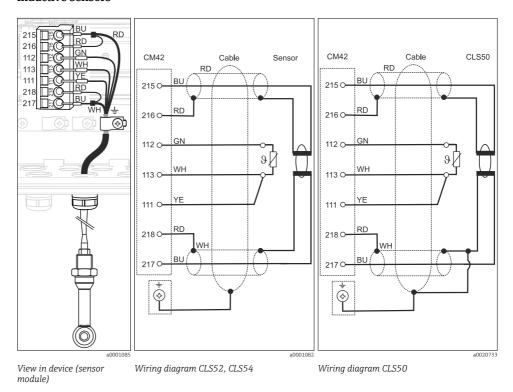
Conductive sensors, two-electrode sensors




View in device (sensor module)

Wiring diagram

Conductive sensors, four-electrode sensors



View in device (sensor module)

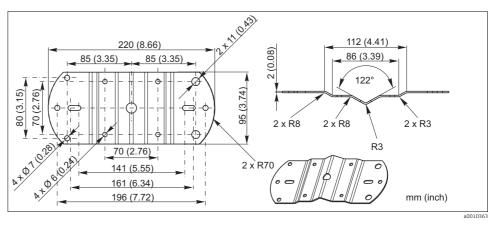
Wiring diagram

Inductive sensors

Performance characteristics

Reference temperature	Standard 25 °C (77 °F) configurable from -5 to 100 °C (23 to 212 °F) ⁷⁾							
Current output response time	t_{90} = max. 500 ms for an increase from 4 to 2	t_{90} = max. 500 ms for an increase from 4 to 20 mA						
Maximum measured error Memosens	Thanks to digital data transmission, the measured value supplied by the sensor at the sensor input is passed on accurately. Measurement accuracy depends solely on the connected sensor and the quality of its adjustment.							
Tolerance of current outputs	25 μA, additionally							
Repeatability	> Documentation of the connected sensor							
Temperature compensation conductivity	Types of compensation None Linear NaCl to IEC 746-3 Natural waters to IEC 7888 Ultrapure water NaCl Ultrapure water HCl (also for NH ₃) 4 user-definable tables ¹⁾ 1) with "Advanced" software package	Range $\alpha = 0.00 \text{ to } 20.00 \text{ %-K}^{-1}$ 0 to 100 °C (32 to 212 °F) 0 to 35 °C (32 to 95 °F) 0 to 100 °C (32 to 212 °F) 0 to 60 °C (32 to 140 °F)						

1) with "Advanced" software package


Installation

Temperature offset

Temperature increase

Wall securing plate

Temperature adjustment

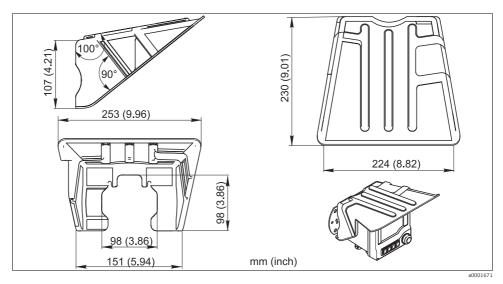
-5 to +5 °C (23 to 41 °F)

0.9 ... 1.1 1)

Mounting plate

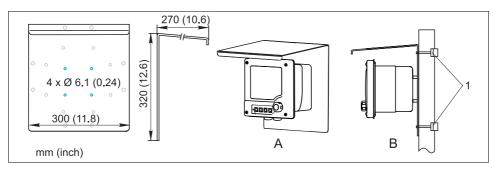
⁷⁾ with "Advanced" software package

Weather protection cover


NOTICE

Effect of climatic conditions (rain, snow, direct sun etc.)

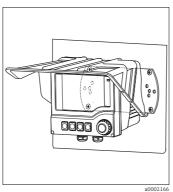
Impaired operation to complete transmitter failure

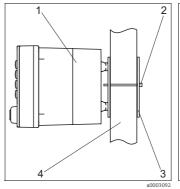

▶ When installing outside, always use the weather protection cover (accessory).

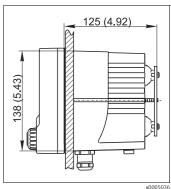
Weather protection cover for plastic housing

Weather protection cover

Weather protection cover for stainless steel housing




a0001676


Weather protection cover CYY101

- Wall mounting
 Pipe or circular post mounting
 Circular post fixture (accessory)
- To mount the weather protection cover on pipes or round posts, you additionally require a round post mount, --> "Accessories". (or "Installation options")

Installation options

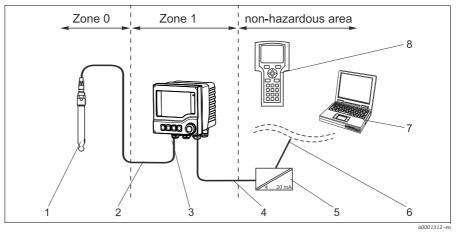
Panel mounting

Wall mounting

- Weather protection cover (optional)

Post mounting

- 1 2.3 4 Liquiline Mounting plate (1x accessory) Pipe or post (circular/square)

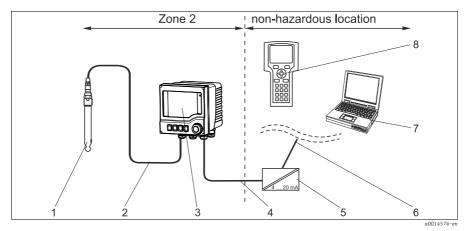


	Wall mounting		Pipe mounting	J	Panel mounting		
Plastic housing							
without weather protection cover	Mounting plate	Standard	Mounting kit:	51518263	Installation kit:	51518173	
with weather protection cover	Protection cover	51517382	Mounting kit: Protection cover	51518263 51517382			
Stainless steel housing							
without weather	Mounting plate	Standard	Mounting kit:	51518286	Installation	51518284	

without weather protection cover	Mounting plate	Standard	Mounting kit:	51518286	Installation kit:	51518284
with weather protection cover	Protection cover	CYY101-A	Protection cover Circular post fixture:	CYY101-A 50062121		

Installation in Ex area

CM42-*G

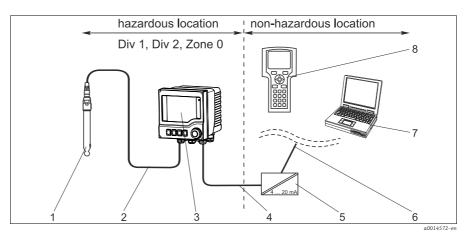


6

Installation in Ex area

- Sensor in Ex version
- 2 Intrinsically safe sensor circuit Ex ia
- 3 Transmitter
- Supply and signal circuit Ex ib (4 to 20 mA) 8
- Active barrier, e.g. Preline RN221 Signal line HART/PROFIBUS/FF
- Fieldcare via PROFIBUS/FF
- HART handheld terminal

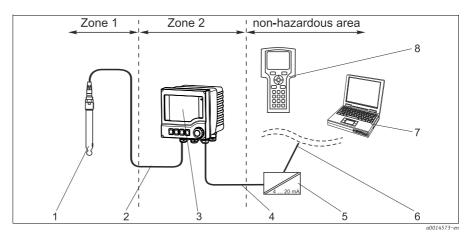
CM42-*V


6

Installation in Ex area

- Sensor in Ex version
- 2 Intrinsically safe sensor circuit Ex ic
- Supply and signal circuit Ex nA (4 to 20 mA)8
- Active barrier, e.g. Preline RN221 Signal line HART/PROFIBUS/FF

 - Fieldcare via PROFIBUS/FF
 - HART handheld terminal


CM42-*P/S

Installation in Ex area

- Sensor in Ex version
- 2 Intrinsically safe sensor circuit
- 3 Transmitter
- Supply and signal circuit (4 to 20 mA)
- Active barrier, e.g. Preline RN221 Signal line HART/PROFIBUS/FF 5
- 6
- 7 Fieldcare via PROFIBUS/FF
- 8 HART handheld terminal

CM42-*X/Z

Installation in Ex area

- 1 Sensor in Ex version
- 2 Intrinsically safe sensor circuit Ex ia
- 3 Transmitter
- 4 Supply and signal circuit Ex nA (4 to 20 mA)8

Active barrier, e.g. Preline RN221

Signal line HART/PROFIBUS/FF

Fieldcare via PROFIBUS/FF

HART handheld terminal

Environment

Amhient	temperatur	e range

Pollution degree

Non-Ex version

-30 to 70 °C (-20 to 160 °F)

Ex version: ATEX II (1)2G

-20 to 50 °C (T6)

-20 to 55 °C (T4)

Ex version: ATEX II 3G

-10 to 50 °C (T6)

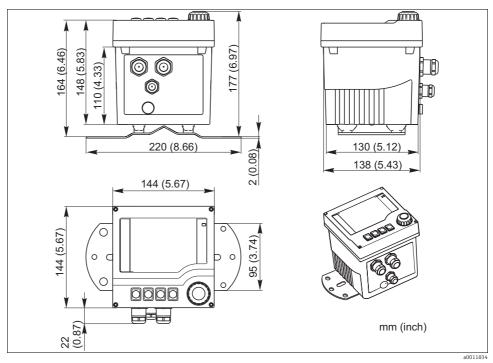
Ex version: FM

-20 to 50 °C (0 to 120 °F) (T6)

Ex version: CSA

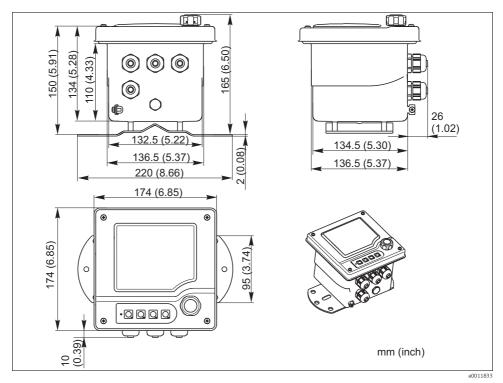
-20 to 50 °C (0 to 120 °F) (T6)

-20 to 55 °C (0 to 130 °F) (T4)


Ambient temperature limits	−30 to 80 °C (−20 to 175 °F)
Storage temperature	-40 to 80 °C (-40 to 175 °F) -25 to 85 °C (-13 to 185 °F)
Electromagnetic compatibility	Interference emission and interference immunity to EN 61326-1: 2004, Category B (residential environments)
Degree of protection	IP66 / IP67 / NEMA 4X
Relative humidity	10 95%, not condensing

The product is suitable for pollution degree 3.

Mechanical construction


Dimensions

Plastic housing

Dimensions

Stainless steel housing

Dimensions

Weight

Plastic housing

1.5 kg (3.3 lbs)

Stainless steel housing

2.1 kg (4.6 lbs)

Material

Plastic housing

Housing

Housing seals

Stainless steel housing

Housing Housing seals

Plastic and stainless steel housing

Module housing Soft keys

Cable mounting rail Display panel

PC?FR (polycarbonate, flame-retardant)

Foamed silicone, EPDM

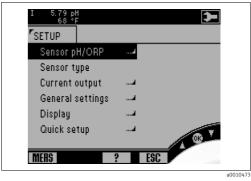
Stainless steel 1.4301 (AISI 304)

EPDM

PC (polycarbonate)

TPE

Stainless steel 1.4301 (AISI 304) PC-FR (polycarbonate, flame-retardant)

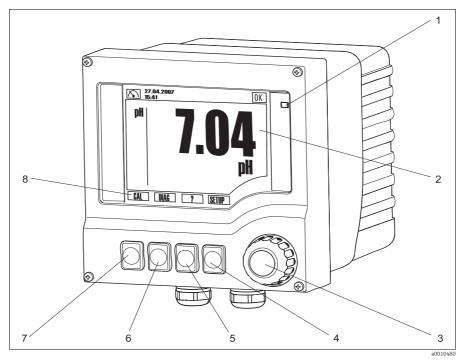

Operability

Operation concept

The unique operating concept sets new standards:

- Fewer user errors thanks to very easy operation
- Rapid configuration using the Navigator.
- Intuitive configuration and diagnosis due to plain text display

Navigator


Plain text menu

Display characteristics

LCD display: FSTN technology (FSTN = Foil Super Twisted Nematic)

Size: $94 \times 76 \text{ mm} (3.7 \times 3.0^{\circ})$ Resolution: $240 \times 160 \text{ dots}$

Operating elements

Operation overview

- 1 Alarm LED
- 2 Display, current display: pH measuring mode
- 3 Navigato
- 4-7 Softkeys
- 8 Display of softkey function (menu-dependent)

Ordering information

Product page

You can create a valid and complete order code on the Internet using the Configurator tool.

Enter the following address in the browser to launch the product page: www.products.endress.com/cm42 $\,$

Product configurator

1. On the right-hand side of the product page, you will find the following selection options:

Product page function

- :: Add to product list
- :: Price & order information
- :: Compare this product
- :: Configure this product
- 2. Click "Configure this product".
- 3. The Configurator opens in a new window. You can now configure your device, and you will receive the valid and complete order code for it.
- 4. Now export the order code as a PDF or Excel file. To do so, click the specific button at the top of the page.

32

Product structure

Product structures always reflect the status at time of going to press. You can create an up-to-date and complete order code on the internet using the Configurator.

		sor ir	•								
	A C I K L M N O P	Conc Conc Digit Digit Digit Digit pH (d	, and the second								
		P S T V X	S CSA IS NI Cl. I, II, III, Div. 1&2, Groups A-G T TIIS Ex ib IIC T4 V ATEX/NEPSI II 3G Ex nA[ic] IIC T6 / II 3 D tD A22 IP67 T85°C X ATEX II (2)3G Ex nA[ia] IIC T6 / II 3 D tD A22 IP67 T85°C								
			Cart	ifica	to						
			Certificate A Not selected B Test certificate to EN 10204, 3.1 C Test certificate to EN 10204, 3.1, factory calibration certificate								
				Out	•						
				0 1 2 3 4	2 current outputs 4 to 20 mA, 1x HART® PROFIBUS PA FOUNDATION Fieldbus						
				Housing							
				0 Plastic housing 1 Housing made of stainless steel 1.4301 (AISI 316L)							
			Cable entry								
					0 M20 x 1.5 1 NPT ½" 2 G½						
							Soft	ware	<u> </u>		
							EA EB		dard v inced		
									ice la		2
								C D E F J K L N P R S T W Z	De/E En/L Fr/E Ja/Ei Kr/E Pl/Ei Nl/E Pt/E: Ru/E Es/E It/Er Sv/E Zh/E	in (Do oe (Do n (Doo n (Doo n (Doo n (Doo n (Doo n (Doo n (Poo n (Poo n (Poo n (Doo n (Cho n (Cho	cs, Czech) cs, German) cs, English) cs, French) cs, Japanese) rean documentation) cs, Polish) cs, Dutch) rtuguese documentation) ssian documentation) cs, Spanish) s, Italian) edish documentation) inese documentation) inese documentation) inese documentation) intation ullation and configuration
									U		
											litional fittings
										0	Basic version SystemDAT CY42-S1
CM42-											Complete order code

Optional

Measuring point identification (Tag), stainless steel 1.4404 Add a 1 to the end of the order code.

Scope of delivery

Depending on the version, the scope of delivery comprises::

- 1 transmitter in the version ordered
- 1 mounting plate incl. 4 flat head screws
- 1 sheet of adhesive labels (nameplate, terminal connection diagrams)
- 1 test certificate to EN 10204-3.1
- 1 factory calibration certificate
- Operating Instructions Part 1 and 2, BA00381C "Commissioning" and BA00382C "Operation" in the language ordered
- 1 CD-ROM with additional documentation
- 1 manufacturer's certificate
- Safety Manual
- Maintenance Documentation SIL 2

Certificates and approvals

C€-character

Declaration of conformity

The product meets the requirements of the harmonized European standards. It therefore complies with the statutory requirements of the EC directives.

The manufacturer confirms successful testing of the product by affixing the **€** symbol.

Ex approval

Depending on the version ordered:

- ATEX II (1)2G Ex ib [ia Ga] IIC T6 Gb / II 3 D tD A22 IP67 T85°C
- ATEX II 3G Ex nA[ic] IIC T6 / II 3 D tD A22 IP67 T85°C (applied for)
- ATEX II (2)3G Ex nA[ia] IIC T6 / II 3 D tD A22 IP67 T85°C (applied for)
- NEPSI Ex nA[ia] IIC T6
- NEPSI Ex nA[ic] IIC T6
- CSA IS NI Cl.I, II, III, Div. 1&2, Grps. A-G
- FM IS NI Cl.I, Div. 1&2, Grps. A-D
- TIIS Ex ib IIC T4

34

Accessories

The following is a list of the most important accessories available at the time this documentation was issued. For accessories not listed here, please contact your local service or sales center.

Mounting kits

Post retainer for plastic housing

- 1 Mounting plate
- 2 Threaded rods M5x75 mm A2
- 2 Hexagonal nuts M5 A2, DIN 934
- 2 spring washers A2 DIN127, form B5 (M5)
- 2 Washers A 5.3, DIN125 A2
- Order No. 51518263

Post retainer for stainless steel housing

- 1 Mounting plate
- 2 Threaded rods M5x75 mm A2
- 2 Hexagonal nuts M5 A2, DIN 934
- 2 spring washers A2 DIN127, form B5 (M5)
- 2 Washers A 5.3, DIN125 A2
- Order No. 51518286

Panel installation kit for plastic housing for panel cutout 138x138 mm (5.43x5.43 inch)

- 1 Panel installation seal
- 2 Tensioning screws M6x150 mm
- 4 Hexagonal nuts M6, DIN934 A2
- 4 spring washers, A2 DIN127, form B6
- 4 Washers A6.4, DIN125 A2
- Order No. 51518173

Panel installation kit for stainless steel housing for panel cutout 138x138 mm (5.43x5.43 inch)

- 1 Panel installation seal
- 2 Tensioning screws M6x150 mm
- 4 Hexagonal nuts M6, DIN934 A2
- 4 spring washers, A2 DIN127, form B6
- 4 Washers A6.4, DIN125 A2
- Order No. 51518284

Weather protection cover

Weather protection cover for plastic housing

Order No. 51517382

Weather protection cover for stainless steel housing

Order No. CYY101-A

Active barrier

Active barrier RN221N

- With power supply for safe isolation of 4 to 20 mA standard signal circuits
- Technical Information TI073R/09/EN

Fieldbus accessories

HART handheld terminal DXR375

- For communicating with a HART-compatible device via a 4 to 20 mA line
- Order No. DXR375

Commubox FXA291

- Interface module between CDI and USB PC interface
- Technical Information TI405C/07
- Order No. 51516983

Fieldbus connection socket

- FOUNDATION Fieldbus M20 7/8" connection
- Order No. 51517974

M12 connector

- Four-pole metal connector for mounting on transmitter
- For connecting to connection box or cable jack. Cable length 150 mm (5.91").
- Order No. 51502184

C-module accessories bag

- 1 capacitor for connecting the cable shielding to ground potential
- Kit documentation SD108C/07/A3
- Order No. 71003097

Measuring cable

Memosens data cable CYK10

- For digital sensors with Memosens technology pH, ORP, oxygen (amperometric), chlorine, conductivity (conductive)
- Order as per product structure (--> Online Configurator, www.products.endress.com/cyk10)
- Technical Information TI00118C/07/EN

Memosens data cable CYK11

- Extension cable for digital sensors with Memosens protocol
- Order as per product structure (--> Online Configurator, www.products.endress.com/cyk11)

Measuring cable CPK9

- For sensors with ESA plug-in head, for high-temperature and high-pressure applications, IP 68
- Order as per order structure
- Technical Information TI00501C/07/EN

Special measuring cable CPK12

- For ISFET sensors and pH/ORP glass electrodes with TOP68 plug-in head
- Order as per order structure
- Technical Information TI00118C/07/EN

Measuring cable CYK71

- non-terminated cable for connecting sensors and for extending sensor cables
- sold by the meter, order numbers:
 - non-Ex version, black: 50085333
 - Ex version, blue: 50085673

Measuring cable CLK6

- Extension cable for extending CLS50/52/54 and transmitter via VBM junction box, sold by the meter
- Order No. 71183688

36

Sensors

pH/ORP glass sensors

Orbisint CPS11/CPS11D

- pH electrode for process engineering
- Optional SIL version for connecting to SIL transmitter
- With dirt-repellent PTFE diaphragm
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps11 or www.products.endress.com/cps11d)
- Technical Information TI00028C/07/EN

Orbisint CPS12/CPS12D

- ORP electrode for process engineering
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps12 oder www.products.endress.com/cps12d)
- With dirt-repellent PTFE diaphragm
- Technical Information TI00367C/07/EN

Ceraliquid CPS41/CPS41D

- pH electrode with ceramic diaphragm and KCl liquid electrolyte;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps41 or www.products.endress.com/cps41d)
- Technical Information TI00079C/07/EN

Ceraliquid CPS42/CPS42D

- Redox electrode with ceramic diaphragm and KCl liquid electrolyte;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps42 or www.products.endress.com/cps42d)
- Technical Information TI00373C/07/EN

Ceragel CPS71/CPS71D

- pH electrode with double-chamber reference system and integrated bridge electrolyte;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps71 or www.products.endress.com/cps71d)
- Technical Information TI00245C/07/EN

Ceragel CPS72/CPS72D

- ORP electrode with double-chamber reference system and integrated bridge electrolyte;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps72 or www.products.endress.com/cps72d)
- Technical Information TI00374C/07/EN

Orbipore CPS91/CPS91D

- pH electrode with open aperture diaphragm for media with high contamination potential:
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps91 or www.products.endress.com/cps91d)
- Technical Information TI00375C/07/EN

Orbipore CPS92/CPS92D

- ORP electrode with open aperture diaphragm for media with high contamination potential;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps92 or www.products.endress.com/cps92d)
- Technical Information TI00435C/07/EN

pH/ORP combined sensors

Memosens CPS16D

- pH ORP combined sensor for process engineering, with dirt-repellent PTFE diaphragm
- With Memosens technology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps16d)
- Technical Information TI00503C/07/EN

Memosens CPS76D

- pH ORP combined sensor for process engineering, hygiene and sterile applications
- With Memosens technology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps76d)
- Technical Information TI00506C/07/EN

Memosens CPS96D

- pH and ORP combined sensor for chemical processes
- With poison-resistant reference with ion trap
- With Memosens technology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps96d)
- Technical Information TI00507C/07/EN

pH?ISFET sensors

Tophit CPS471/CPS471D

- Sterilizable and autoclavable ISFET sensor for food and pharmaceuticals, process engineering,
- Water treatment and biotechnology;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps471 or www.products.endress.com/cps471d)
- Technical Information TI00283C/07/EN

Tophit CPS441/CPS441D

- Sterilizable ISFET sensor for media with low conductivity, with
- liquid KCl electrolyte;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps441 or www.products.endress.com/cps441d)
- Technical Information TI00352C/07/EN

Tophit CPS491/CPS491D

- ISFET sensor with open aperture diaphragm for media with high contamination potential;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps491 or www.products.endress.com/cps491d)
- Technical Information TI00377C/07/EN

Enamel pH electrode

Ceramax CPS341D

- pH electrode with pH-sensitive enamel
- For the toughest requirements in terms of measurement accuracy, pressure, temperature, sterility and operating life
- Order as per product structure (--> Online Configurator, www.products.endress.com/cps341d)
- Technical Information TI00468C/07/EN

Inductive conductivity sensors

Indumax P CLS50/CLS50D

- Highly-resistant inductive conductivity sensor for standard, Ex and high-temperature applications
- With or without Memosens technology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls50d or .../ cls50)
- Technical Information TI00182C/07/EN

Indumax H CLS52

- Inductive conductivity sensor with fast-acting temperature sensor for applications in the food industry
- Order as product structure (--> Online Configurator, www.products.endress.com/cls52)
- Technical Information TI00167C/07/EN

Indumax H CLS54D

- Inductive conductivity sensor with certified, hygienic design for foodstuffs, beverages, pharmaceuticals and biotechnology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls54d)
- Technical Information TI00508C/07/EN

Indumax H CLS54

- Inductive conductivity sensor with certified, hygienic design for foodstuffs, beverages, pharmaceuticals and biotechnology
- Order as product structure (--> Online Configurator, www.products.endress.com/cls54)
- Technical Information TI00400C/07/EN

Conductive conductivity sensors

Condumax W CLS12

- For process temperatures up to 160 °C (320 °F) and process pressures up to 40 bar (580 psi)
- Order as product structure (--> Online Configurator, www.products.endress.com/cls12)
- Technical Information TI00082C/07/EN

Condumax W CLS13

- For process temperatures up to 250 °C (480 °F) and process pressures up to 40 bar (580 psi)
- Order as product structure (--> Online Configurator, www.products.endress.com/cls13)
- Technical Information TI00083C/07/EN

Condumax CLS15/CLS15D

- Conductive conductivity sensor for pure and ultrapure water and Ex applications
- With Memosens protocol (CLS15D) or analog (CLS15)
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls15d)
- Technical Information TI00109C/07/EN

Condumax H CLS16/CLS16D

- Hygienic, conductive conductivity sensor for pure, ultrapure water and Ex applications
- With EHEDG and 3A approval
- Optionally available with Memosens (CLS16D)
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls16d)
- Technical Information TI00227C/07/EN

Condumax W CLS19

- Inexpensive, conductive conductivity sensor for pure and ultrapure water applications;
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls19)
- Technical Information TI00110C/07/EN

Condumax W CLS21/CLS21D

- Two-electrode sensor in version with plug-in head and fixed cable
- Optionally available with Memosens (CLS21D)
- Order as per product structure (--> Online Configurator, www.products.endress.com/cls21d)
- Technical Information TI00085C/07/EN

Amperometric oxygen sensors

Oxymax COS22D

- Sterilizable sensor for dissolved oxygen
- Order as per product structure (--> Online Configurator, www.products.endress.com/cos22d)
- Technical Information TI00446C/07/EN

Oxymax COS51D

- Amperometric sensor for dissolved oxygen, with Memosens technology
- Order as per product structure (--> Online Configurator, www.products.endress.com/cos51d)
- Technical Information TI00413C/07/EN

Software update and upgrade

CY42 DAT module

- Function upgrade, update and memory module
- Ordering as per order structure

	Ver	sion						
	S1	SystemDAT, for software update, changeover to other parameters, language catalog extension						
	F1	FunctionDAT for extending the function to 2 current outputs						
	F2	FunctionDAT for extending the function to advanced software						
	C1	CopyDAT, for saving the configuration and transferring it to other devices						
CY42-		Complete order code						

www.addresses.endress.com

